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Abstract

Introduction: Cathepsin K (CatK) is a lysosomal cysteine protease and the
predominant cathepsin expressed in osteoclasts, where it degrades the bone matrix.
Hence, CatK is an attractive therapeutic target related to diseases characterized by bone
resorption, like osteoporosis.

Areas covered: This review summarizes the patent literature from 2011 to 2021 on
CatK inhibitors and their potential use as new treatments for osteoporosis. The
inhibitors were classified by their warheads, with the most explored nitrile-based
inhibitors. Promising in vivo results have also been disclosed.

Expert opinion: As one of the most potent lysosomal proteins whose primary function
is to mediate bone resorption, cathepsin K remains an excellent target for therapeutic
intervention. Nevertheless, there is no record of any approved drug that targets CatK.
The most notable cases of drug candidates targeting CatK were balicatib and
odanacatib, which reached Phase II and III clinical trials, respectively, but did not enter
the market. Further developments include exploring new chemical entities beyond the
nitrile-based chemical space, with improved ADME and safety profiles. In addition,
CatK’s role in cancer immunoexpression and its involvement in the pathophysiology of
osteo- and rheumatoid arthritis have raised the race to develop activity-based probes

with excellent potency and selectivity.

Keywords: cathepsin K inhibitors, cysteine protease inhibitors, osteoporosis,

odanacatib, nitriles, activity-based probes



Article highlights:

e (Cathepsin K is one of the most attractive targets associated with bone-related
diseases.

e Selectivity over other cathepsins can be a problem and needs further attention in
developing new inhibitors.

e Derivatives of odanacatib and balicatib are still of interest to inhibit CatK.

e The chemical diversity has increased through the last decade by introducing new
classes of warheads to achieve high potency and selectivity for CatK.

e The use of a new activity-based probe as a CatK substrate is described for

monitoring abnormal bone resorption.



1. Introduction

Cathepsin K (CatK) is a lysosomal cysteine protease that belongs to the human
cathepsin family; an eleven-membered family categorized according to their structures
and catalytic mechanisms. The cysteine cathepsin family possesses a standard papain-
like structure with a conserved active site region with a Cys-His-Asn catalytic triad
(Figure 1a) [1]. Cathepsins exist in several living organisms, such as bacteria, viruses,
plants, and animals. They are known to be involved in a variety of diseases, such as
many types of cancer [2—4], autoimmune disorders [5], and bone-related diseases [6].

The active site of CatK consists of 4-four well-characterized subsites (S1°, S1,
S2, S3 Figure 1b), which are explored to design new ligands. These inhibitors may or
may not present selectivity since the subsites share a high degree of structural homology
with other cathepsins [7]. The S1 subsite contains the catalytic triad (Cys25, His162,
and Asnl182) responsible for the mechanism of action of the enzyme. The S2 pocket of
CatK is the smallest among the enzymes of the C1 family, mainly because of the Tyr67
and Leu209 residues. The S3 subsite is often used to achieve selectivity over other
cathepsins and is shaped by the Asp61 residue [7].

Consequently, inhibitors are designed to interact with CatK subsites to achieve
high potency and selectivity over other cathepsins. The use of peptidomimetic
compounds is a common approach, in which a reactive group, usually called warhead, is
commonly linked to it (Figure Ic) [8,9]. The warhead is a highly electrophilic moiety
that participates in a nucleophilic attack promoted by the thiolate from the Cys25
residue, forming a covalent bond between the inhibitor and the enzyme. The other
moieties of the inhibitors labelled as P1, P2, and P3 will participate in noncovalent

interactions with the respective residues present in the S1, S2, and S3 subsites.

Figurel

Interestingly, CatK is the only cathepsin highly expressed in osteoclasts, where
the enzyme is present in the lysosome and cytoplasmic vesicles [10]. Activated
osteoclasts widely secrete it to degrade the bone matrix, primarily type I collagen
protein, constituting approximately 90% of the organic bone matrix [6]. The enzyme

can also degrade type II collagen, the main matrix protein in cartilage [11]. Research



with murine models reinforces the critical role of CatK in bone resorption[12—14].
Studies showed that mice with CatK deficiency could develop osteopetrosis of the long
bones, in which inefficient osteoclasts activity was observed [13]. Additionally, a recent
study showed that osteocytes could also express and secrete CatK, required for
lactation-induced peri-lacunar resorption, to assure the right amounts of calcium in milk
and aid skeletal development in offspring [15]. Therefore, the enzyme has become an
attractive and essential biological target for treating bone-related diseases, primarily
osteoporosis [8,16,17], which will be discussed throughout this review. Furthermore, it
is essential to mention that despite CatK’s role in osteoporosis, its implication goes
beyond as the enzyme is also expressed in other cell types [16], which makes the
protein a promising target for many diseases, such as diabetes [18], obesity [19], and
some types of cancer [20,21]. Additionally, pycnodysostosis [22], that is a rare
autosomal recessive disorder, which is caused by inactivating mutations in CatK
expressed in a wide range of non-bone cells, to which more research needs to be
devoted.

Osteoporosis is an age-related systemic skeletal disease characterized by
decreased bone mass and microarchitectural deterioration of bone tissue, resulting in
fragile bones and susceptibility to fracture [23]. The disease is caused by an imbalance
between bone resorption and bone formation, affecting about 200 million people
worldwide, mainly postmenopausal women [24,25]. To date, there are multiple classes
of drugs to treat osteoporosis, such as hormone replacement therapy [26], calcitonin
[27], Denosumab (RANKL inhibitor) [28], Romosozumab (a new monoclonal antibody
that binds sclerostin) [29], and bisphosphonate drugs (BPs) [30]. However, the use of
these drugs can lead to several side effects; for example, the use of BPs and
Romeosozumab is associated with hypocalcemia, impairment of renal function, flu-like
symptoms, and ocular inflammation, and severe side effects such as osteonecrosis of the
jaw, which is more common in immunosuppressed patients [31-35]. It is, nevertheless,
a matter of concern that the medical-related osteonecrosis of the jaw (MRONJ)
condition, caused by powerful BPs direct toxicity to bone and soft tissue cells, is
fostered by treatment duration and concomitant oral surgery [36]. Fortunately, there is
evidence of the use of intra-oral formulation of low potency BPs (IpBP) to dramatically
reduce the osteocyte necrosis area when locally administered in Zoledronate-pretreated

mice [37]. Therefore, beyond the need for new drugs to treat osteoporosis where CatK



inhibitors can play a central role as new therapies for this disease, its role in patients
with MRONU needs to receive further dedicated studies [38].

An analysis of the Google Scholar database showed that research involving the
treatment of osteoporosis by targeting CatK has a yearly average of 469 papers
published between 2000 and 2010. This value increased to an average of 922.8 articles
per year in the following decade (2011 — 2021), indicating a compelling research topic.
CatK has 65 crystal structures published in the Protein Data Bank (RCSB PDB). All
structures containing inhibitors are with covalent ones, in which a wide range of
warheads can be found. In a survey of the ChEMBL database [39], we have found 1799
compounds tested against human CatK (ChEMBL268), with 1450 of them having a
pICso or pK; equal to or higher than six. A search in the Google Patents database
showed that approximately 5000 patents related to CatK inhibition were submitted
during the last twenty years

Despite all the effort made in the subject, there are no CatK inhibitors approved
for the treatment of osteoporosis, mainly due to harsh side effects and selectivity issues
related to other cathepsins. There are up to eight clinical trials focusing on CatK
inhibition, of which four are related to the treatment of osteoporosis with the
compounds Odanacatib, Balicatib, ONO-5334, and Relacatib [7]. Promising
therapeutics such as ONO-5334 (Figure 2a) developed by ONO Pharmaceutical Co.,
Ltd. (Japan) reached phase II clinical trials. The drug is a non-lysosomotropic
hydrazine-based inhibitor with high potency against CatK and moderate selectivity
towards Cathepsins B, L, and S. ONO-5334 was able to significantly increase bone
mineral density (BMD) and reduced urine collagen degradation markers in
postmenopausal women, with a similar effect seen in BPs [40,41]. Despite the lack of
clinically relevant safety concerns, the drug was discontinued due to competitiveness-
related problems. Balicatib (AAES581) (Figure 2b), developed by Novartis
Pharmaceuticals S.A. (Switzerland), is a lysosomotropic reversible covalent
peptidomimetic compound that also reached phase II clinical trials. The compound
exhibits significant efficacy in in vitro and in vivo assays of bone resorption. A study
with ovariectomized monkeys demonstrated that periosteal bone formation rates were
increased during treatment with Balicatib despite a significant decrease in bone turnover
[42]. Unfortunately, during phase II clinical trials, patients developed morphea-like skin
lesions when a dose of 50 mg/day was administered [43], leading to the discontinuation

of the studies.



Odanacatib (ODN, MK-0822) (Figure 2c) is the only CatK inhibitor to achieve
phase III clinical trials. ODN is a selective and reversible nitrile-based CatK inhibitor
developed by Merck & Co. (USA). In a phase III study with postmenopausal women,
called Long-term Odanacatib Fracture Trial (LOFT), the drug was able to reduce serum
(CTx) and urine markers (NTx) of bone resorption by more than 50% 24 hours after
administration of the drug. Hence, ODN significantly reduced the risk of vertebral and
hip fracture due to a possible increase in the BMD [44]. Despite the excellent results,
ODN treatment presented severe side effects, such as the increased risk of strokes and

atrial fibrillation, which led to the discontinuation of the trial.

Figure2

In 2011, a review of patents describing CatK inhibitors (2004 — 2010) was
published [45] in which all the inhibitors found were derived from low molecular
weight peptides that displayed reversible binding. Most of them carried a nitrile as a
warhead, probably influenced by Balicatib and Odanacatib studies since, at that time,
the two compounds were entering phase Il and III clinical trials, respectively. This
article aims to review patents that address novel cathepsin K inhibitors developed in the
last ten years focusing on potential new treatments for osteoporosis. Patents filed
between January 2011 and August 2021 were analyzed, following preceding articles on

the subject [45,46].

2. Covalent Inhibitors

Covalent inhibitors (Cls) are frequently small molecules that bind to a target
enzyme by forming a covalent bond [47]. Cls can act through a reversible or irreversible
mechanism depending on their electrophilic functional group [48]. Due to the stronger
character of covalent bonds, drugs that display a covalent inhibition possess many
advantages over traditional noncovalent drugs, such as higher efficiency, longer
residence times, drug resistance rate, and less-frequent dosing [47,49]. Despite being
avoided by the pharmaceutical companies until the past decade due to concerns of side
effects, the scenario has changed a lot since then, with over 50 covalent drugs currently

approved by the FDA [49].



To inhibit CatK, the relevance of covalent ligands that display a reversible
inhibition mechanism is well known. This can be seen in patents filed in the last ten
years, of which the majority presents reversible inhibitors with a nitrile as a warhead,
most of them being ODN derivatives. Interestingly, most of these patents belong to
Merck & Co. (USA), the assignees of the ODN patent, and Asian pharmaceutical

companies.

2.1. Nitrile-Based Inhibitors

Nitriles are widely used as warheads in the medicinal chemistry field. The
chemical group is considered a bioisostere of carbonyl, hydroxyl, and carboxyl groups,
due to the capability of the nitrogen atom to act as a hydrogen bond acceptor [50]. In
addition, nitriles have a linear shape that can enable a better fit into the protein-binding
site [51].

Inhibitors such as ODN provide an indispensable guide for developing and
designing novel anti-resorptive drugs and studies related to new formulations. Mahjour
et al. from Merck & Co. (USA) filed a patent describing new formulations comprising
the use of ODN in combination with vitamin D [52]. Vitamin D possesses two main
forms: vitamin Dj; (cholecalciferol) and vitamin D, (ergocalciferol). The two forms are
inactive precursors of the hydroxylated biologically active metabolites of vitamin D,
which are essential to regulate calcium homeostasis when serum calcium decreases,
responsible for the effects of vitamin D on calcium and bone metabolism [53]. Thus, its
combination with a CatK inhibitor could potentialize its effects. Moreover, the
invention describes different types of formulations comprising the combination of ODN
and Vitamin D but does not show any results related to these formulations. Prior to the
patent publication, clinical trials regarding ODN in combination with vitamin D in
postmenopausal women sponsored by Merck & Co. (USA) were performed under the
identifier NCT00729183. The clinical trials reached phase III, in which results showed
that the combination decreased bone resorption, maintained bone formation, and
increased areal and volumetric BMD [54,55].

Kassahun et al. [56] from Merck & Co. (USA) developed an ODN derivative,
with the replacement of hydrogen atoms by deuterium in the 4-fluoro-L-leucine group
at the P2 position (1). The authors stated that the replacement improved metabolic and

pharmacokinetic profiles by reducing the cytochrome P450 (CYP3A4) mediated



clearance compared to non-deuterated analogues. An in vivo study in male rhesus
monkeys (n = 4) via intravenous route was performed with a mixture of deuterated (Ds-
ODN) and non-deuterated Odanacatib (ODN). It was determined that Dg-ODN has a 3-
fold higher exposure, 3-fold lower clearance, and 4-fold longer half-life when compared
to ODN. In addition, a pharmacokinetic evaluation was carried out following oral
administration to monkeys using different formulations. The study showed that a
combination of deuterium substitution and spray drying provided a more significant
boost in exposure (6-fold increase). Furthermore, deuterium substitution increased the

plasma elimination half-life of ODN by about 2.5-fold.
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Stachel et al. from Merck & Co. (USA) published two patents using the same
class of nitrile compounds. In one of the patents [57], a library of 159 compounds was
studied, and immunoprecipitation (IP) values were specified for CatK and Cathepsin F
(CatF). The best inhibitor presented was compound 2, with an IP value of 0.28 nM for
CatK and 71 nM for CatF. In the second patent [58], the authors claimed 248 nitrile
compounds, which were structurally similar to the first one [57]. Values of IP were also
provided for CatK and CatF, with compound 3 presenting IP values of 0.3 nM for CatK
and 35 nM for CatF. Interestingly, the only structural change between compounds 2 and
3.is the replacement of an oxazole for a thiazole. The changes between the compounds
demonstrate that the groups are equivalent regarding CatK, but not against CatF, once
compound 3 performed better. In both patents, the authors mentioned kinetic assays

against cathepsins K, L, S, B, and F and in vivo experiments using male Sprague
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Dawley rat line, but no results were displayed.

Nagaraj and co-workers from Alkem Laboratories LTD. (Bangalore, IN)
published two patents regarding the use of nitrile-based inhibitors targeting CatK. In
one of the patents [59], 72 inhibitors substituted bicyclic heteroaryl amide derivatives
were presented. The inhibitors were tested against human cathepsins K, L, S, V, and rat
CatK. Several compounds displayed high affinity and selectivity for human CatK over
the other cathepsins, such as compounds 4 and 5, with an ICsy value of < 10 nM for
human CatK (ICsp < 500 nM for rat CatK) and ICsy values in the range of 100 to 1000
nM for the other cathepsins. The authors conducted a bone resorption inhibition activity
assay and a pharmacokinetic study using the Sprague Dawley rat line, but they did not
specify which inhibitor was used. A known CatK inhibitor (not specified by the authors)
was used for comparative purposes. Results showed that C, 4 levels in rats were 3-fold
higher for the invention compound, yielding a C,,,,/CatK that is approximately 2-fold
higher than that for the known inhibitor. The compound displayed a superior
pharmacokinetic profile, stability, and selectivity, demonstrating a clear advantage over
known CatK inhibitors. In an efficacy study in ovariectomized rat osteoporosis model,
no toxicity was observed during compound administration for three weeks and no gross
pathological observation of abnormality in the treated animals. Moreover, the invention
compound showed a dose-dependent reduction level of the known osteoporosis marker
carboxy-terminal cross-linked telopeptide of type I collagen (CTx-1). Furthermore, no
apparent accumulation or decrease in steady-state concentration related to repeat dosing

was observed in the experiment.
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The second patent describes potent nitrile-based CatK inhibitors that are
substituted piperidine urea derivatives [60]. The work comprised the synthesis of 151
compounds, all of them tested against human cathepsin K, and S, and rat CatK.

Compound 6 exhibited an ICsp < 10 nM for CatK and CatS, not showing a significant



selectivity between the cathepsins. For rat CatK, an ICsy of < 500 nM was obtained. An
efficacy study using the Sprague Dawley rat line was conducted for three weeks using a
non-specified compound of the invention. A dose-dependent reduction in CTx-1 levels
was observed during this period, but the pharmacokinetics study did not show any

apparent accumulation or decrease in steady-state concentration on repeated dosing.
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2.1.1 Hydrazinonitriles

Researchers from Jilin University (China) published two patents describing
cathepsin K inhibitors containing the hydrazinonitrile moiety, known as azanitriles.
These inhibitors are similar to the widely used structures containing a nitrile warhead,
however, their reactivity increases since the hydrazinonitrile is more electrophilic than
the carbonitrile. Despite that, the covalent bond formation with the cysteine thiolate is
still reversible, which decreases the likelihood of side effects and general toxicity. In
addition, the authors state that, with modulation of the P1-P3 substituents, high
selectivity was achieved when tested against cathepsins B, L and S.

These authors published two patents: (i) Hongwei et al. [61] described a series of
non-peptidic CatK inhibitors (7-10), demonstrating improved selectivity by removing
the P2=P3 amide linker and exploiting different substituents at P3; (ii) Busch et al. [62]
described two novel inhibitors (11,12) by changing the P3 group to better match the S3
pocket of cathepsin K. In addition to an improved selectivity profile, these compounds
did not present toxicity (in murine muscle cells, murine chondrocytes, and human
osteosarcoma cells) and showed intracellular CatK activity in a murine primary
chondrocyte model.

The use of azanitriles as cathepsin K inhibitors had been described in the non-
patent literature before this patent publication [63,64]. Further research on this scaffold
by some of the authors of the patents has also been reported in the academic literature

[65,66].
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2.1.2. 2-Cyanopyrimidin-4-yl Carbamate

Kim et al. from Hanlim Pharmaceutical Co., LTD. (Republic of Korea) claimed
a novel series of 191 compounds using the moiety 2-cyanopyrimidin-4-yl carbamate
with a nitrile as the reactivity group [67]. Herein, the pyrimidine group acts as an
electron-withdrawing group (EWG) to increase the warhead's reactivity to a
nucleophilic attack. In addition, they also presented a urea moiety, right after the
cyclohexyl group, to retain the hydrogen bonds with the Gly66 of CatK.

In general, the compounds displayed good inhibitory activity against CatK. For
instance, compounds 13-16 show an ICsy of 0.1 nM for CatK, more than 10-fold higher
than Balicatib (despite the scaffold similarity) and 2-fold higher than ODN. This
improvement in activity is likely due to the higher reactivity of the warhead. It is also
possible to rationalize that the hydrogen bond acceptor group after the double ring at the
P3 position in all four compounds participates in a hydrogen bond interaction with a
structural water molecule, like ODN [68].

Interestingly, the authors also synthesized a compound with the methylsulfonyl
group at P3 (17) with an ICsp = 2.1 nM against CatK and more than 5000-fold
selectivity against the cathepsins B, L, and S. They also published an article with a
formulated self-micro emulsifying drug delivery system (SMEDDS) based on
compound (17) to enhance its oral bioavailability [69]. In addition, they suggest that



the SMEDDS can be used with other CatK inhibitors to treat osteoporosis if the

compounds present poor solubility in water and consequently low oral bioavailability.
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2.2. Other classes

2.2.1. a-oxoacyl amino-caprolactam

Kobayashi and co-workers from the Japanese pharmaceutical company
Seikagaku Corporation published two patents describing a-oxoacyl amino-caprolactam
derivatives [70,71]. These chemicals bear a seven-membered cyclic amide moiety in
which the a-carbon is bonded to the nitrogen atom of an a-ketoamide. The chemical
structure also contains two amino acid-related groups (valine and cyclohexane
derivatives in all cases) and a terminal group (R). According to the patent under the
scope, the terminal group (R) can be a five or six-membered ring.

It is claimed that this type of chemical scaffold displays low inhibitory activity
for CYP3A4. This is a desirable property, once drugs to treat osteoporosis would be

mainly administered to older people, who are probably taking other medications. As



mentioned in the patent [70], the use of a-ketoamides in combination with cyclic amides
had been previously described [72]. However, the authors stated that the preceding
patent did not cover the R moieties explored in these new series of compounds, thereby
justifying the novelty of the works.

Moreover, three novel compounds (18-20) with ICsy values of > 40 uM for
CYP3A4 showed a selectivity of over 40000 times for CatK over CYP3A [70], which is
a 100-folder improvement when compared with 15 chemicals from reference [72] with
CYP3A4 1Csp < 10 uM.

The series with a-oxoacyl amino-caprolactam motif was expanded by Kobayashi
and co-workers [71] in a second patent. This time, only two novel derivatives have their
CatK and CYP3A4 activity described (21,22). CatK inhibitory potencies are around 0.5
nM, while the selectivity profile was improved by keeping CYP3A4 inhibition low. The
most selective compound could achieve a CYP/CatK inhibition ratio higher than

140000. In both works, the selectivity among cathepsins was not discussed.
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CatK IC,, = 0.52 nM

2.2.2. Vitamin K and related compounds

In 2021, Chao et al. from the Shanghai Center for Disease Control and



Prevention (China) [73] described CatK inhibition by some vitamin K subtypes and 3-
lapachone, which are compounds based on naphthoquinone and phenanthrenequinone

scaffolds (Figure 3).

Figure3

CatK inhibition assays were only reported for P-lapachone and vitamin K
subtypes menaquinone-4 and menaquinone-7, with all three presenting an ICsp = 1.3 £
0.2,21.8 £5.5, and 52.8 £ 5.5 uM, respectively. In addition, B-lapachone can decrease
the degradation of collagen (90.3 %), elastin (65.4 %), and thyroglobulin (74.3 %),
comparable to ODN. Other in vivo experiments were performed in murine models using
B-lapachone and menaquinone-4 to evaluate bone health, such as increased bone density
and decreased bone resorption.

As stated by the authors based on the literature [74], vitamin K deficiency has
been associated with bone degradation and the development of osteoporosis, although
its precise role has not been determined. B-lapachone has also been shown to inhibit

osteoclastogenesis [75], independently from CatK modulation.

2.2.3. Epoxysuccinyl derivatives

Epoxysuccinic acid derivatives compose another class of compounds widely
used to inhibit cysteine proteases. E-64 is a classic example of a pan-cysteine protease
inhibitor containing the trans-epoxysuccinic acid moiety [7]. Aiming to circumvent the
selectivity issue while maintaining the electrophilic group, Li and co-workers [76]
developed a series of 2,3-epoxysuccinyl derivatives to exploit the noncovalent
interactions.

Compound 23 was designed with a phenyl-piperidinyl group at one of its
extremities in the molecular structure. This group probably mimics the P3 group of the
Balicatib and Odanacatib, with the presence of the double-ring. Thus, this moiety of the
compound can fit similarly at the S3 subpocket of the enzyme. This compound showed
an ICsy of 164 nM against CatK with good selectivity over CatL (38-fold) and CatS (10-
fold). The biggest drawback was observed for CatB, once compound 23 was 40-fold

more potent against this enzyme than CatK.



(23)
CatK IC50 =164 nM

2.2.4. Tetrahydrofuro[3,2-b] pyrrol-3-one

The tetrahydrofuro[3,2-b]pyrrol-3-one warhead is being studied to obtain highly
potent and selective inhibitors for CatK [77]. Recently, Oden et al. [78] have exploited
analogues bearing this warhead, wherein changes were made in position 6 of the 5,5-
bicyclic ring, coupled to a peptidomimetic scaffold in position 4. The most promising
compounds present an acetylene group in position 6, acting as an EWG group.

In addition, the authors modified the side chains of leucine to test other
substituents as P1 groups, such as cyclopentylglicine. At the P3 position, the authors
decided to use three adjacent and connected distinct rings, starting with benzamide,
followed by thiazole, and finishing with piperazine. While in the second ring (thiazole),
they tested the presence of a fluorine atom in position 5, as showed in the chemical
structures of compounds 24 and 25. The compounds displayed a Ki= 1.6 nM 24 and 1.1
nM against CatK and are highly selective (1250-fold) over the cathepsins S and L.

Pharmacokinetic parameters were also evaluated for compound 24. According to
the authors, it presents good metabolic stability through the human liver cytosol pool
assay, with a calculated whole blood half-life approaching 4 hours. It also shows better
liver metabolism stability than an analogue with a methyl group in position six instead
of the acetylene. Compound 25 was also subject to an experiment using the human
gastroenteric canal cells (Caco-2) to quantify the permeability coefficient (Payp) of

9.1x10° cm/s, almost three times better than the reference compound.
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2.3. Activity-Based Probes

The use of activity-based probes (ABPs) as substrates of CatK has been
described in the literature for measuring CatK activity [79-81]. A recent patent [82]
presents a series of “osteoadsorptive fluorogenic sentinel” (OFS-1) probes synthesized
at the University of Southern California by McKenna CE and shown by Nishimura I
(University of California, Los Angeles) to act as substrates of CatK released by
osteoclasts. The probe consists of a bone-anchoring bisphosphonate moiety connected
to a FRET quencher in a CatK peptide substrate sequence (Figure 4). The fluorogenic
substrates are adsorbed by hydroxyapatite (HAp) and bone mineral surfaces, where an
external fluorescent signal is generated in response to the osteoclast-secreted CatK.
Thus, it is a promising new imaging tool to detect abnormal bone resorption. The
resorption can be monitored throughout extended periods with a single dose, differently
from existing probes cleared within a few days in vivo.

An in vivo assay was performed to confirm the hypothesis, and the OSF-1 probe
could label multiple myeloma-induced aberrant osteoclastogeneses in NSG/BLT
humanized mice injected with human RPMI-8226-Luc cells. Micro-computed
tomography analysis indicated that the OSF-1 signal was in the relatively early multiple
myeloma lesion without detrimental osteolysis. Additionally, the authors stated that the
OSF-1 probe could be used in vitro to determine whether osteoclasts are secreting CatK
to track their migration on mineral substrates. An article detailing their findings was

recently published [83].



Figure4

3. Conclusion

Cathepsin K is a papain-like cysteine protease highly expressed in osteoclasts
and is considered a biological target for bone-related diseases, such as osteoporosis.
Thus, new chemical entities have been developed in the last decade as potential new
treatments for osteoporosis via inhibition of CatK. This review summarizes findings in
the patent literature filed between 2011-2021, showing the most promising compounds.
In this period, new classes of warheads were introduced, and derivatives of the clinical
candidates Odanacatib and Balicatib are still being exploited. Encouraging results were
achieved with the design of highly potent and selective CatK inhibitors coupled to in
vitro and in vivo improved properties. Furthermore, a new activity-based probe that acts
as a substrate of CatK was filed. The probe could track down abnormal bone resorption

by targeting CatK activity and might be a valuable tool for future research.

4. Expert Opinion

As one of the most potent lysosomal proteins whose primary function is to
mediate bone resorption, cathepsin K remains an excellent target for therapeutic
intervention. Recently, a great interest in this target can be observed by the surmount
publications and patents filed.

Unfortunately, there is no CatK inhibitor currently in clinical trials. Balicatib
and Odanacatib, the most advanced compounds, were discontinued after reaching phase
Il and III clinical trials, respectively. Despite failing in clinical trials, there is still
interest in new formulations with Odanacatib and the design of novel derivatives.
However, the patents prioritize the design of covalent reversible inhibitors; among
them, the nitriles constitute the preferred warhead to target CatK.

Current treatments for osteoporosis include BPs and, more recently,
Romosozumab, a monoclonal antibody (MAB). BPs drugs Alendronate and Zoledronate

are the most used and effective treatments for osteoporosis. Unfortunately, BPs showed



several side effects in osteoporotic patients, making them undesirable for long-term use.
Romosozumab, currently approved to treat osteoporosis, is shown to be more effective
than BPs, but the MAB could increase the cardiovascular risk (a subject that still needs
further investigation) [22]. MAB drugs have a very high cost, which makes the
replacement of BPs difficult. Thus, developing a new class of small molecules is still of
much interest, especially when considering the enormous impact on the elderly
population worldwide, which are prone to develop osteoporosis.

This review has shown that many of the patents filed in the last ten years are
built upon previously published molecular scaffolds, mostly peptidomimetics
compounds bearing an electrophilic warhead. The most promising compounds have
similar scaffolds, but the molecular diversity of the novel chemicals could overcome the
limitations presented by the compounds that failed the clinical trial. Computational
methods, such as molecular dynamics simulations with the determination of absolute or
relative binding free energy and machine learning-based approaches or even the
combination of both methods [84—86], are likely to impact the discovery of novel CatK
inhibitors positively.

According to biochemical and cell-based assays, the analysed patents have
described compounds with excellent in vitro activity, and some works even described
promising in vivo assays on murine and other animal models. CatK selectivity is not a
significant issue for many inhibitors, with several compound classes presenting more
than 100-fold selectivity. Therefore, ADME properties, safety, and in vivo potency
constitute the most relevant topics for improvement in the following years. The failed
clinical trial outcomes from Balicatib and Odanacatib should guide the future
development of these novel chemicals. The mechanism of action behind the increased
risk of stroke in patients treated with ODN was not further investigated. Therefore, new
CatK inhibitors are likely designed not to avoid this specific side effect, although it
would be advisable to test for cardiovascular side effects in in vivo assays. Strikingly,
the patents did not describe any known methods to justify this side effect or even how to
avoid it. Consequently, a further body of investigation is wanted to comprehend the
nature of any relationship between CatK inhibition and increased risk of cardiovascular
events such as stroke.

From a structural point of view in the development of new inhibitors, there are
still many molecules with a basic moiety, such as a nitrogen atom, at the P3 position,

which, despite being associated as a characteristic of CatK inhibitors, may lead to



harmful properties, such as hERG inhibition and lysosomotropism [87]. Thus, new
moieties at the P3 position should be considered when designing new inhibitors without
toxicity concerns. The balance between reactivity and unwanted off-target effects is
another cornerstone parameter for selecting the electrophilic warhead that forms the
covalent bond with the catalytic cysteine.

The first patent in which the use of ABPs is described as CatK substrate was
filed earlier this year (2021). The probe showed excellent results regarding its use in
detecting abnormal bone resorption, displaying high potency and selectivity. CatK is
also a promising target for different types of cancer [20,21,88]; thus, the probe can
monitor osteoclast's activity to detect and diagnose neoplasia accurately. New ABPs
should be designed bearing in mind their valuable contribution as a detection tool to
impact the patient's therapeutic response positively.

Worthy of note is the successful application of cysteine protease inhibitors to
treat viral diseases. Recently, the Food and Drug Administration has approved Paxlovid,
a combination drug that has the inhibitors Nirmatrelvir and Ritonavir, for emergency

use for COVID-19 (https://www.fda.gov/news-events/press-

announcements/coronavirus-covid-19-update-fda-authorizes-first-oral-antiviral-

treatment-covid-19). Nirmatrelvir is a SARS-CoV-2 main protease inhibitor that bears a

nitrile group as ‘warhead’ [89], which demonstrate that active-site-directed compounds
based on nitriles are still a good strategy as therapeutic cysteine proteases inhibitors.
However, for CatK inhibitors, although nitrile is a good choice for the warhead,
selectivity issues must be addressed in order to reduce the risk of off-target activity.
Thus, the requirements for a minor side effect-prone CatK inhibitor may be reached on
modulation of warhead electrophilicity that controls the reactivity and modifications in
P2 and P3. Therefore, we expect that novel cysteine protease inhibitors will enter the
clinical trials in the foreseeable future due to the successful development of chemicals

coupling favourable pharmacodynamic and pharmacokinetic properties.
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